
Telemetry Retrieval Inaccuracy in Programmable Switches:
Analysis and Recommendations

Hun Namkung
★
, Daehyeok Kim

★
, Zaoxing Liu

†
, Vyas Sekar

★
, Peter Steenkiste

★

★
Carnegie Mellon University,

†
Boston University

Abstract
Sketching algorithms or sketches are attractive as telemetry capabil-

ities on programmable hardware switches since they offer rigorous

accuracy guarantees and use compact data structures. However,

we find that in practice, their actual implementations can have

a significant (up to 94×) accuracy drop compared to theoretical

expectations. We find that the delays incurred by pulling and reset-

ting the data plane state induce accuracy degradation. We design

and implement solutions to reduce the delays and show that our

solutions can help eliminate almost all the inaccuracy of existing

sketch workflows.

CCS Concepts
• Networks→ Programmable networks; Network monitor-
ing.

ACM Reference Format:
Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, Peter Steenkiste .

2021. Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis

and Recommendations. In The ACM SIGCOMM Symposium on SDN Research
(SOSR) (SOSR ’21), October 11–12, 2021, Virtual Event, USA. ACM, New York,

NY, USA, 7 pages. https://doi.org/10.1145/3482898.3483357

1 Introduction
Recent advances have made it possible to design and implement

various telemetry capabilities, such as sketches [15, 18, 19], counting

bloom filters [20], and others [17] in programmable switches [1,

3]. At a high level, these network telemetry tasks maintain data

structures with arrays of counters in the data plane for tracking

traffic flows, which are then retrieved by the switch and network

control plane.

Our specific focus in this work is on sketches. The typical work-

flow of sketch-based telemetry is as follows. For every (pre-defined)

measurement epoch (i.e., a periodic time window), the switch con-

trol plane fetches the counter arrays to compute statistics of interest

(e.g., heavy hitters, distinct flows, entropy [10, 15, 18, 19, 26, 31, 39])

and resets the counter arrays. Essentially, the counter arrays are

shared state between the data plane and the control plane. The data

plane updates the state when processing packets, and the control

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SOSR ’21, October 11–12, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9084-2/21/10. . . $15.00

https://doi.org/10.1145/3482898.3483357

plane reads the state per epoch and resets the state for the next

epoch.

While the fidelity of the sketches is backed by theoretical analy-

sis [15, 18, 19], in practice when we implement and deploy sketches

using the above workflow on programmable hardware switches

(e.g., Intel Tofino-based switch), the empirical results are inaccurate

(§2). For instance, there is a significant accuracy drop (e.g., up to

94× error increase), when the epoch size is small (e.g., 5s to 1s). To

the best of our knowledge, we are the first to document this counter

retrieval problem and propose solutions.

We systematically investigate the state fetching and resetting

process implemented on an Intel Tofino-based switch [1]. Our anal-

ysis shows that the time spent on pulling and resetting data plane

states is non-trivial. We decompose delays into the control and data

plane delays, identify a total of six potential delays, and quantify

the impact of each component. Our analysis reveals that two con-

trol plane delays can cause significant impacts on the accuracy of

counters (§3).

Having identified the key bottlenecks, we propose four correct-

by-construction solution building blocks, within the scope of sketch-

ing algorithms, with different trade-offs:

• Duplicating sketch instances in the data plane, one of which is

updated alternately in successive epochs.

• For sketches with a linearity property [20, 26, 30, 35], the control

plane can offset the error by subtracting counter arrays between

previous and current epoch.

• Deferring a control plane read operation after a reset operation

to reduce the impact of the bottleneck delay.

• Using a faster bulk reset API.

We also propose guidelines on which building blocks are appropri-

ate for different use cases (§4). We implement these building blocks

for five sketches [15, 18, 19, 21, 31] and evaluate them on a Tofino-

based programmable switch [1]. We demonstrate that delays are

reduced by more than 95%, and error is reduced by more than 97%

(§5). While our focus is on sketches, our findings and solutions are

likely more broadly applicable to other telemetry tasks since they

often share workflow interactions between the data and control

plane.

2 Background and Motivation
We first describe the common workflow of sketches in Fig. 1. We

then highlight the sketch accuracy drop in an actual hardware im-

plementation compared to a software implementation and discuss

the implications of this observation.

TypicalWorkflow. Fig. 1 shows the common workflow for deploy-

ing network telemetry tasks on programmable switches. Traffic

is chunked into time intervals or epochs. On the data plane, net-

work telemetry tasks maintain counter arrays that are updated by

https://doi.org/10.1145/3482898.3483357
https://doi.org/10.1145/3482898.3483357

SOSR ’21, October 11–12, 2021, Virtual Event, USA Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, Peter Steenkiste

Switch Control Plane

Switch Data Plane
counter arrayspacket

stream

Epoch read_state()
reset_state()

read
req.

read
res.

reset
req.

ack

𝛥𝑟𝑒𝑎𝑑 𝛥𝑟𝑠𝑡

Figure 1: Workflow of sketches.

4K 8K 16K 32K 64K

counter array size

0

20

40

60

80

100

%
of

D
iff

er
en

t
C

ou
nt

er
s

Different Counters

epoch 1s

epoch 5s

epoch 10s

epoch 20s

epoch 30s

(a) Different Counters.

4K 8K 16K 32K 64K

counter array size

0

2000

4000

6000

8000

10000

N
or

m
al

iz
ed

E
rr

or
In

cr
ea

se
(%

)

Error Increase

epoch 1s

epoch 5s

epoch 10s

epoch 20s

epoch 30s

(b) Error Increase.

Figure 2: Different counters cause accuracy degradation.

processing packets. At the end of every epoch, the control plane

periodically reads the counter arrays and resets them.

We implement five published sketches [15, 18, 19, 21, 31] on a

Tofino-based programmable switch using the above workflow and

observed a significant discrepancy in accuracy compared with a

software implementation. We illustrate the problem using a simple

sketch called count-min sketch (CM) [18]. The CM uses a 2D array

of counters to detect heavy hitters from a packet stream for a

given flowkey (e.g., srcIP). We use srcIP as the flowkey for our

implementation.

Methodology. The sketch implementation on the hardware is par-

titioned across the data and control plane. In the data plane, we run

the CM written in P4 [13] and send the input packet stream (𝑆) to

the switch from a directly connected server using tcpreplay [6].
The control plane periodically reads and resets the counter arrays

using the control plane API provided by the Tofino SDK [2]. The

SDK supports Python and C++, and we present results using C++

API.
1
To obtain the theoretically expected accuracy, we use a soft-

ware implementation of CM sketch written in C++. We split an

input packet stream 𝑆 into multiple subsets 𝑆𝑖 corresponding to an

epoch with length 𝐿.2 The software implementation pauses packet

processing while it reads and resets the counter array. We measured

the accuracy of the sketch using both the software and hardware

implementations for different epoch lengths (𝐿) and counter array

sizes.

Findings. Fig. 2a shows the percentage of the number of differ-

ent counters in the counter array between the software simula-

tion and the hardware measurement. We see that up to 98% of

counters are different. This discrepancy problem reduces accu-

racy as shown in Fig. 2b. The normalized error increase is defined

1
Based on the conversation with Barefoot, the Python API is not recommended for

latency critical applications because Python API is a RPC wrapper for the C++ API.

2
For the input packet stream 𝑆 , we sample ten one-minute packet traces from inter-ISP

packet trace captured on an OC-192 link [7].

as
Erroractual−Errorexp

Errorexp
, where Errorexp is the expected error us-

ing software sketch implementation relative to ground truth and

Erroractual is the actual error using the hardware implementation.

The error increases up to 94× at an array size of 64K and epoch

length of 1. We use an average relative error (§5.1) as the error of

CM.

Implications. At a high level, the discrepancy arises due to the

delays involved in the read and reset operation in Fig. 1, Δread and

Δrst . As we will see later (§3), they are not negligible. Note that the
above results focus on a simple sketch with a small counter array, a

relatively large epoch (1 to 30 seconds), and non-adversarial traffic

conditions. In practice, the problem could be worse.

• First, richer network telemetry tasks that use more data plane

counters such as R-HHH [10] and UnivMon [31] will be im-

pacted more as the impact increases with the size of the counter

array.

• Second, network telemetry tasks with tighter timing deadlines

(shorter epochs) will be impacted more as the delay, relative to

the epoch length, becomes more significant.

• Lastly, the worst case error can become unbounded; there can

be bursts of packets (e.g., anomalies or attacks) that coincide

with the Δread or Δrst intervals.

3 Problem Diagnosis

We take a closer look at the read and reset delays to understand the

discrepancy problem better.

3.1 A Closer Look at Sources of Error

We can logically decompose the read and reset delays into control

and data plane delays, as shown in Fig. 3. The read delay at Epoch𝑖 ,
Δread𝑖 , consists of two control plane delays and one data plane

delay: Δread𝑖 = Δread𝐶1
𝑖 +Δread𝐶2

𝑖 +Δread𝐷𝑖 , where Δread𝐷𝑖 rep-

resents the duration of actual data transfer from the data plane.

Similarly, we can represent the the reset delay as Δrst𝑖 = Δrst𝐶1
𝑖

+Δrst𝐶2
𝑖

+Δrst𝐷
𝑖
, with similar control and data plane components.

Let 𝐹 (𝑆) be the sketching function computed on a given set

of packets 𝑆 . For Epoch𝑖 , we want to measure 𝐹 (𝑆𝑖). However,
the above delays result in a different set of packets actually being

monitored; they are marked as epoch packets and measured packets

in Fig. 4.

More specifically (see Fig. 3), let 𝑆Δread𝑖
and 𝑆Δrst𝑖 denote the

sets of packet streams during the read and reset operation inEpoch𝑖 .

Let 𝑆Δread𝐶1
𝑖
, 𝑆Δrst𝐶1

𝑖
denote the sets of packets during Δread𝐶1

𝑖

and Δrst𝐶1
𝑖

. 𝑆Δread𝐷
𝑖
, 𝑆Δrst𝐷

𝑖
are more subtle because the control

plane and data plane access the counter array simultaneously. We

define 𝑆Δread𝐷
𝑖
(similarly 𝑆Δrst𝐷

𝑖
) as the set of packets in the traffic

stream during Δread𝐷𝑖 (Δrst𝐷
𝑖
) where packets in this set update

the counter array before the read and reset operation is executed.

Themeasured packets (the dotted line in Fig. 4) is 𝐹 ((𝑆𝑖−(𝑆Δread𝑖

∪ 𝑆Δrst𝐶1
𝑖

∪ 𝑆Δrst𝐷
𝑖
))∪ (𝑆Δread𝐶1

𝑖+1
∪ 𝑆Δread𝐷

𝑖+1
)). Note that the ef-

fect of Δread𝐶2
𝑖 is included in 𝑆Δread𝑖

. Next, we quantify the delays

that cause the loss in accuracy.

Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis and Recommendations SOSR ’21, October 11–12, 2021, Virtual Event, USA

𝛥𝑟𝑒𝑎𝑑!

𝛥𝑟𝑒𝑎𝑑!"#
Ctl

plane

data
plane

set of
packets

𝛥𝑟𝑒𝑎𝑑!"$

counter array

𝛥𝑟𝑠𝑡!

𝛥𝑟𝑠𝑡!"# 𝛥𝑟𝑠𝑡!"$

𝐸𝑝𝑜𝑐ℎ!

𝑆∆&'()!"# 𝑆∆&*+!"#𝑆∆&'()!$ 𝑆∆&*+!$
𝑆∆&'()!

counter array

𝑆∆&*+!

…
𝛥𝑟𝑒𝑎𝑑!, 𝛥𝑟𝑠𝑡!,

Figure 3: Decomposition of the read and reset delays into control
plane and data plane delays at Epoch𝑖 .

𝐸𝑝𝑜𝑐ℎ!

𝛥𝑟𝑠𝑡!𝛥𝑟𝑒𝑎𝑑! 𝛥𝑟𝑠𝑡!"#𝛥𝑟𝑒𝑎𝑑!"#

𝑆! 𝑆!"#

… …

𝐸𝑝𝑜𝑐ℎ!"#

: measured packets (HW): epoch packets (SW)

𝑆∆%&'!"# 𝑆∆%&'!$ 𝑆∆%()*!%#"# 𝑆∆%()*!%#$𝑆∆%()*! 𝑆∆%&'!

Figure 4: Different input packet sets between software and hardware
create the discrepancy problem.

3.2 Quantifying Sources of Error
To understand the magnitude of impact from each source of delay,

we measure these next.

Methodology. At a high level, we measure the delays by sending

packets at a controlled rate to the switch data plane and reading the

counter values into the control plane. To this end, we use custom

benchmarking programs in addition to the sketch implementations—

data plane program using P4 language and the control plane using

C++ API. Our measurements use efficient control plane read and

reset operations. For the read operation, we utilize table sync opera-
tion which uses bulk DMA transfer from data plane counter arrays

into control plane buffer so that the control plane can read counters

more quickly. For the reset operation, we use the transaction API,

which accelerates the individual write operations.

To measure Δread𝐷𝑖 we need to measure the time between when

the control plane reads from the first counter 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [0] to the

last counter 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [N-1] of a counter array. This is done by syn-

thesizing a packet stream that contains two packets every 100𝜇𝑠
and using them to increment (+1) 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [0] and 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [N-1] re-
spectively. In this way, Δread𝐷𝑖 can be measured by (𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [N-1]
−𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [0]) ×100𝜇𝑠 . The server uses tcpreplay to send this syn-

thesized packet stream to the directly connected switch while the

control plane executes the read operation.

We use the same setup to measure the duration of the data

plane reset operation Δrst𝐷
𝑖
. However, since the reset operation

resets counter values incrementally starting with the first one,

the control plane executes the reset operation during tcpreplay
and then executes the read operation after tcpreplay is finished.
(𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [0] −𝑐𝑜𝑢𝑛𝑡𝑒𝑟 [N-1]) ×100𝜇𝑠 then represents Δrst𝐷

𝑖
. To mea-

sureΔread𝐶1
𝑖 andΔread𝐶2

𝑖 , the control plane reads the first counter

4K 8K 16K 32K 64K
counter array size

0

100

200

300

400

500

D
el

ay
(m

s)

∆readi

1 bit counter

32 bit counter

64 bit counter

4K 8K 16K 32K 64K
counter array size

0

100

200

300

D
el

ay
(m

s)

∆rsti

1 bit counter

32 bit counter

64 bit counter

Figure 5: The read and reset delays (ms).

Delays 4K 16K 64K

Δread𝑖

Δread𝐶1
𝑖 0.30 0.97 3.62

Δread𝐷
𝑖 0.01 0.07 0.31

Δread𝐶2
𝑖 22.21 66.70 244.49

Total 22.53 67.74 248.43

Δrst𝑖

Δrst𝐶1
𝑖

16.45 41.69 145.53

Δrst𝐷
𝑖

0.09 0.36 1.49

Δrst𝐶2
𝑖

0.02 0.02 0.03

Total 16.56 42.08 147.06
Δread𝑖 + Δrst𝑖 39.10 109.81 395.48

Table 1: Six delay measurement (ms).

value before and after the read operation and we can then calcu-

late those values using subtraction. We apply the same ideas for

measuring Δrst𝐶1
𝑖

and Δrst𝐶2
𝑖

.

Result. Fig. 5 shows the Δread𝑖 and Δrst𝑖 delays for different
counter array sizes and counters (e.g., 1-bit, 32-bit). The read delay

Δread𝑖 can be up to 488 ms and the reset delay Δrst𝑖 can be up to

291 ms. Both delays increase linearly as the size of the counter array

increases. For different counter sizes, a 64-bit counter takes 1.97×
more delay than a 32-bit counter because the switch maintains

a 64-bit counter as a pair of 32-bit counters. However, the delay

difference between 32-bit and 1-bit counter is marginal (1.01×).3
Next, we look at six decomposed delays for 32-bit counters in

Table 1. Surprisingly, Δread𝐷𝑖 and Δrst𝐷
𝑖
take less than 0.1%, 0.4% of

the total read and reset delays. Meanwhile, we can see that Δread𝐶2
𝑖

and Δrst𝐶1
𝑖

are the dominant factors as they take up more than

98% of the sum of the read and reset delays.

Key takeaways.Out of six delays, two control plane delaysΔread𝐶2
𝑖

and Δrst𝐶1
𝑖

are dominant factors. For example, Δread𝐶2
𝑖 (Δrst𝐶1

𝑖
)

of 16K array size takes 61% (38%) of the total sum of delays. Across

all sizes of counter arrays, both bottleneck delays together account

for 99% of the total delay.

4 Building Blocks and Solution Guidelines
In this section, we propose four solution building blocks to mask

or reduce the delays identified in the previous section. These have

varying trade-offs regarding the epoch size they can support, re-

source usage, general applicability across tasks. Table 2 summarizes

3
We cannot measure the delays for 1-bit counters with the described methodology

because 1-bit counter can not store an integer value. Instead, we used a timer in the

control plane program to measure delays for the 1-bit counter in Fig. 5.

SOSR ’21, October 11–12, 2021, Virtual Event, USA Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, Peter Steenkiste

Building
Blocks Δread𝐶2

𝑖 Δrst𝐶1
𝑖

Epoch Gen. Res.

B1 hide hide smallest � 2x

B2 hide hide small × 1x

B3 hide × med � 1x

B4 × reduce med � 1x

Table 2: Tradeoffs for solution building blocks in different metrics
such as hiding/reducing two bottleneck delays, epoch size it can
support, generality, resource usages.

these trade-offs. We also provide some general guidelines for com-

bining building blocks as solutions appropriate for different use

cases.

4.1 Building Blocks

B1: Use duplicate counters. A simple idea is to duplicate sketch

instances in the data plane and alternately use them for odd/even

epochs. At Epoch𝑖 , counter array in sketch instance 1 can be up-

dated in the data plane while the control plane reads and resets

sketch instance 2. Then at Epoch𝑖+1, counter array in sketch in-

stance 2 can be updated in the data plane while the control plane

reads and resets instance 1.

Trade-off. This idea masks all delays and the key bottleneck delays.

However, this idea requires 2× the data plane memory. Realizing it

also requires some data plane code (P4) change.

B2: Offset counter errors in the control plane. Some sketches

have a linearity property [33]. That is, counter arrays can be com-

bined in a mathematical sense by addition and subtraction of each

counter. In such cases, the control plane can avoid explicitly reset-

ting the counters or duplicating the counters. Instead, it stores the

counter arrays reported from the previous epoch (in the control

plane) and obtains the counters for the current epoch by subtracting

the previous counter arrays from counter arrays reported at the

current epoch.
4

Trade-off. This idea masks the key bottleneck delays of the reset

and does not incur any additional data plane resources. It only

requires small control plane code updates to subtract counter arrays.

However, this idea is only applicable to sketches satisfying the

linearity property. Fortunately, we’ve seen a range of linear sketches

such as [15, 20, 26, 30, 35] for various measurements. We do see

one caveat that some sketches for tracking heavy hitters in the

data plane [18] need to access per-epoch counters to identify heavy

flowkeys. Since the data plane only stores accumulated values, we

cannot obtain per-epoch values directly in the data plane.

B3: Defer control plane read operation.We observe that during

Δread𝐶2
𝑖 , most of the time is spent on reading counter arrays from

an internal buffer in the control plane. That is, data is already

transferred from the data plane using bulk DMA transfer as in

Fig. 6. Thus, we can defer this operation of reading data from the

buffer after the reset operation. We can implement this idea because

4
The idea of not resetting the counters across epochs can bring up a concern of

overflow. However, subtracting two counter array still works as long as there is at

most 1 overflow per epoch. Empirically, the 32-bit counter is large enough to avoid

two overflows.

read

read

reset

reset
DMA msg

CP

DP

transfer

CP read

read

read

bulk
reset

buffer

DMA msg

counter array counter array

buffer

reset

defered
read

buffer

CP read

: B3. defer the CP read operation hides 𝛥𝑟𝑒𝑎𝑑!
"#

: B4. bulk reset API reduces 𝛥𝑟𝑠𝑡!
"$

callback callback

transfer

Figure 6: B3: Defer control plane read operation and B4: Use bulk
reset API.

Resource is sufficient and/or high accuracy with
small epoch length is required?

Sketch has a property of a linear combination and
counter arrays are not used in the data plane?

yes

Solution 1 (B1)

no

Solution 2 (B2)

yes

no

Solution 3 (B3 + B4)

Figure 7: Decision tree for selecting solutions.

1) the reset operation does not reset the internal buffer and 2) the

read operation can be divided into separate API calls: bulk DMA

transfer and reading data from the internal buffer.

Trade-off. This idea does not require additional resources and it can
be applied to sketches without linearity property. However, it only

reduces the effect of Δread𝐶2
𝑖 .

B4: Use bulk reset API. This solution building block directly

reduces Δrst𝐶1
𝑖

as in Fig. 6. We observed that the basic control

plane support for reset updates counters one at a time. This is

effectively a write operation and provides a more general capability

to write an arbitrary value at a specific location. However, we note

that there is also a clear API that suffices for our needs well since

it resets all of the counter arrays to zero with much lower delay

(18× faster).
5

Trade-off. This idea only reduces the effect of Δrst𝐶1
𝑖

, thus it still

can suffer accuracy degradation for a small epoch length.

4.2 Guidelines for Sketch Developers
Based on the above building blocks, we suggest a guideline for

sketch developers on which solution is appropriate for different

use cases summarized in the decision tree (Fig. 7):

• Solution1 (B1)would fit for small sketches and/or resources are

sufficient. B1 provides the highest fidelity, especially for small

epoch length.

• Solution2 (B2) uses low resource footprint. It is a simple solu-

tion for sketches satisfying linearity when counter arrays are

not used in the data plane.

• Solution3 (Combine B3 and B4). These two building blocks

can be combined to tackle two bottleneck delays. The combined

5
According to the conversation with Intel, Tofino2 supports an even faster bulk reset

API.

Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis and Recommendations SOSR ’21, October 11–12, 2021, Virtual Event, USA

solution requires some implementation effort but is general and

is appropriate when resource overhead is critical.

5 Evaluation
Our evaluation demonstrates that (a) all solutions significantly

reduce the error of the hardware implementation relative to the ex-

pected accuracy and (b) the implementation effort for the solutions

is marginal in terms of additional lines of code.

5.1 Experimental Setup

Testbed. We use an Edgecore Wedge 100BF Tofino-based pro-

grammable switch and a server equipped with dual Intel Xeon

Silver 4110 CPUs, 128GB RAM, and a 100Gbps Mellanox CX-4 NIC

connected to the switch. We use Tofino SDE version 9.1.1 in our ex-

periment. We send the trace to the switch from a directly connected

server using tcpreplay.

Traces.We use sampled ten one-minute packet traces from CAIDA

backbone traces capture at 1/21/16 Chicago [7].
6

Sketches. We implement five sketches, MRB [19], HLL [21], count

sketch (CS) [15], count-min sketch (CM) [18], andUnivMon (UM) [31]

using P4 language. MRB uses 1-bit counters and the rest of the

sketches use 32-bit counters. MRB and HLL use one counter array

and CS, CM, UM use four counter arrays. MRB, HLL estimate cardi-

nality, CS, CM estimate the average relative error of top-100 heavy

hitter flow counts, and UM estimates entropy. Note that out of five

sketches, CS, CM, UM satisfy the linearity property. We assume

that we know all of the flowkeys for CS, CM, UM since identifying

heavy flowkeys on the data plane is orthogonal to this work. We

use P4 version of 𝑃416.

Metrics of difference.We consider three types of metrics:

• Raw counters:We consider both the total counter value differ-

ence =
∑
𝑖 |𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 [𝑖] − 𝑎𝑐𝑡𝑢𝑎𝑙 [𝑖] | and the relative counter

difference =

∑
𝑖 (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 [𝑖]!=𝑎𝑐𝑡𝑢𝑎𝑙 [𝑖])

𝑎𝑟𝑟𝑎𝑦_𝑠𝑖𝑧𝑒 .

• Sketch Errors: Average Relative Error (ARE) is
1
𝑘

∑𝑘
𝑖=1

|𝑓𝑖−𝑓𝑖 |
𝑓𝑖

,

where 𝑘 is 100. 𝑓𝑖 is true flow count, 𝑓𝑖 is flow count estimate, and

𝑓𝑖 ≥ 𝑓𝑖+1 for any 𝑖 . This metric is used for CS and CM. Relative

Error (RE) is
|True−Estimate |

True
, where T𝑟𝑢𝑒 is true statistic value

and E𝑠𝑡𝑖𝑚𝑎𝑡𝑒 is estimated value. This metric is used for MRB,

HLL, UM.

• Delay:We measure the sum of delays that corresponds to union

and subtraction components in §3.1: Δread𝑖 + Δrst𝐶1
𝑖

+ Δrst𝐷
𝑖

+ Δread𝐶1
𝑖+1 + Δread𝐷𝑖+1.

5.2 Error and Delay Reduction

Counter difference reduction.We first look at the counter differ-

ence reduction in Table 3. We use a fixed epoch length of 1 second.

We can see that all solutions reduce almost all of the total counter

value difference compared to unoptimized hardware implementa-

tion. Specifically, Sol 1 incurs no counter difference, and Sol 2, Sol

3 incur little counter differences. Note that the total counter value

difference has a more direct effect on sketch accuracy than the

relative counter difference.

6
We also run experiments with other traces such as data center traces [12] and attack

traces [8]. Results are similar thus, they are not shown.

MRB HLL CS CM UM

A.size 64K 4K 64K 64K 128K

Unopt 1273/2% 91/1% 618K/73% 700K/76% 1030K/26%

Sol 1 0/0% 0/0% 0/0% 0/0% 0/0%

Sol 2 × × 10K/7% 10K/7% 16K/5%

Sol 3 5/0% 3/0% 22K/12% 22K/13% 33K/8%

Table 3: Total counter value difference / relative counter difference
for five sketches and three solutions using epoch=1s.

MRB HLL CS CM UM

Array size 64K 4K 64K 64K 128K

Expected
Errors

Ideal
sketch 1.6% 4.8% 0.7% 0.4% 2.8%

Actual
Errors

Unopt 20.1% 6.2% 35.4% 34.8% 64.7%

Sol 1 1.6% 4.8% 0.7% 0.4% 2.8%

Sol 2 × × 1.0% 0.7% 2.8%

Sol 3 1.7% 4.8% 1.5% 1.1% 3.6%

Table 4: Expected errors vs. actual errors using epoch=1s.

4K 16K 64K

Unopt 39.39 110.84 399.39
Sol 1 0 (100%) 0 (100%) 0 (100%)

Sol 2 0.32 (99.20%) 1.04 (99.06%) 3.94 (99.01%)

Sol 3 1.53 (96.11%) 4.66 (95.79%) 16.67 (95.83%)

Table 5: The sum of delays after applying solutions in ms (% of
reduction compared to unoptimized).

Error reduction. Next, we look at the error reduction in Table 4.

Compared to errors on unoptimized implementation, actual errors

on all solutions are almost close to expected errors measured on

software implementation.

Delay reduction. Table 5 shows that all solutions reduce delays
significantly. Sol 1 does not incur any delays. Sol 2 can reduce delays

by 99% across all counter array sizes. Sol 3 also reduces delays by

95%. Note that the delays after applying solutions are still linear to

the counter array size.

Detailedmeasurement.Weobserve reductions for fixed array size

and epoch length. We pick one sketch (CS) and look at the counter

differences and error reductions for different array sizes and epoch

lengths. Fig. 8 shows that as array size increases, the total counter

value difference increases linearly, but it is constant over epoch

lengths. Note that Sol 1 does not incur any counter differences

across all array sizes and epoch lengths. Fig. 9 shows that the error

gap between expected and un-optimized measurement is increasing

as array size increases and epoch length decreases. All solutions

effectively reduce this gap and they show similar errors as expected.

5.3 Implementation Effort
Table 6 shows additional lines of code for implementing solutions.

Sol 1 requires P4 code change for duplicating instances and C++

control plane program change for reading instances alternatively.

Code change for Sol 2 is in an offline processing program written

SOSR ’21, October 11–12, 2021, Virtual Event, USA Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas Sekar, Peter Steenkiste

4K 8K 16K 32K 64K

array size

104

105

106

T
ot

al
C

ou
nt

er
V

al
ue

D
iff

er
en

ce

CS (epoch length 1s)

Unopt

Sol 2

Sol 3

1s 5s 10s 20s 30s

epoch length

104

105

106

T
ot

al
C

ou
nt

er
V

al
ue

D
iff

er
en

ce

CS (array size 64K)

Figure 8: Total counter value difference for CS.

4K 8K 16K 32K 64K

array size

0

10

20

30

A
R

E
(%

)

CS (epoch length 1s)

Unopt

Sol 1

Sol 2

Sol 3

Expected

1s 5s 10s 20s 30s

epoch length

0

10

20

30

A
R

E
(%

)

CS (array size 64K)

Figure 9: Average relative error for CS.

Additional
Lines of code

Sol 1 Sol 2 Sol 3
B1 B2 B3 B4

Data Plane P4 Code 29 0 0 0

Control Plane Program (C++ API) 63 0 0 19

Offline Processing 0 9 0 0

Table 6: Additional lines of code for implementing solutions.

in Python for subtracting counter arrays. B3 in Sol 3 does not

incur any additional lines of code since it just swaps the order of

the control plane read and reset operation. B4 in Sol 3 requires

additional control plane program code for bulk reset API.

6 Related work

Sketch-based telemetry. Sketches have emerged as a promising

telemetry solution for flow-level measurements, including heavy

hitters [15, 18, 31, 37, 39], entropy estimation [31, 34, 36], change

detection [30, 40], and distinct flows [21, 31]. While recent ef-

forts [14, 41] propose to maintain more light-weight sketches per

device, they still suffer from the incorrect counter retrieval issue in

programmable switches and can benefit from our solutions.

Other work in network telemetry. There are complementary

telemetry capabilities that focus on packet-level and path-level

monitoring (e.g., INT [29] and PINT [11]), higher-order telemetry

(e.g., performance statistics [16, 22, 32], application level moni-

toring [38]), diagnosis [25, 28], as well as network-wide adaptive

telemetry [23, 24]. A not hard extension is to explore if these teleme-

try tasks can suffer from a similar incorrect state retrieval and reset

problem.

Other programmable platforms. In addition to the switches

discussed in this paper, SmartNICs such as multicore SoCNICs [4, 5]

and FPGA NICs [9] are platforms for telemetry. Recent work [27] in

measuring the performances of various SmartNICs demonstrated

a similar bottleneck between the data plane and the control plane.

A future direction is to explore the telemetry retrieval inaccuracy

problem in SmartNICs.

7 Conclusions
We consider a practical problem of deploying network telemetry

tasks on programmable switches. We identify and quantify the

causes of an accuracy degradation in sketches. Our solutions in-

formed by our analysis can eliminate almost all the inaccuracy for

five sketches. We believe our insights are more broadly applicable

to other network telemetry tasks with similar control-data plane

interactions.

Acknowledgement
We would like to thank the anonymous SOSR reviewers, Jeongkeun

Lee, and Georgios Nikolaidis for their constructive feedback. This

work was supported in part by the CONIX Research Center, one of

six centers in JUMP, a Semiconductor Research Corporation (SRC)

program sponsored by DARPA, and by NSF awards 1565343 and

1700521.

References
[1] Barefoot Tofino. https://barefootnetworks.com/products/brief-tofino/.

[2] Barefoot P4 Studio. https://www.barefootnetworks.com/products/brief-p4-

studio/.

[3] Broadcom Trident 4. https://www.broadcom.com/products/ethernet-

connectivity/switching/strataxgs/bcm56880-series.

[4] Mellanox DPU. https://www.nvidia.com/en-us/networking/products/data-

processing-unit/.

[5] Netronome Agilio SmartNICs. https://www.netronome.com/products/nfe/.

[6] tcpreplay. https://tcpreplay.appneta.com/wiki/tcpreplay-man.html.

[7] The CAIDA UCSD Anonymized Internet Traces. https://www.caida.org/data/

passive/passive_dataset.xml.

[8] The U.S. National CyberWatch Mid-Atlantic Collegiate Cyber Defense Competi-

tion (MACCDC). https://www.netresec.com/?page=MACCDC.

[9] Xilinx FPGA. https://www.xilinx.com/products/silicon-devices/fpga.html.

[10] Ben Basat, R., Einziger, G., Friedman, R., Luizelli, M. C., and Waisbard,

E. Constant time updates in hierarchical heavy hitters. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (2017).

[11] Ben Basat, R., Ramanathan, S., Li, Y., Antichi, G., Yu, M., and Mitzenmacher,

M. Pint: probabilistic in-band network telemetry. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication
(2020), pp. 662–680.

[12] Benson, T., Akella, A., and Maltz, D. A. Network traffic characteristics of

data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement (2010), pp. 267–280.

[13] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J.,

Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. P4:

Programming protocol-independent packet processors. SIGCOMM Comput. Com-
mun. Rev. (2014).

[14] Bruschi, V., Basat, R. B., Liu, Z., Antichi, G., Bianchi, G., and Mitzenmacher,

M. Discovering the heavy hitters with disaggregated sketches. In Proceedings
of the 16th International Conference on emerging Networking EXperiments and
Technologies (2020), pp. 536–537.

[15] Charikar, M., Chen, K., and Farach-Colton, M. Finding frequent items in data

streams. In International Colloquium on Automata, Languages, and Programming
(2002), Springer, pp. 693–703.

[16] Chen, X., Kim, H., Aman, J. M., Chang, W., Lee, M., and Rexford, J. Measuring

tcp round-trip time in the data plane. In Proc. of SIGCOMM SPIN Workshop (2020).
[17] Chen, X., Landau-Feibish, S., Braverman, M., and Rexford, J. Beaucoup:

Answering many network traffic queries, one memory update at a time. In

Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication (2020), pp. 226–239.

[18] Cormode, G., and Muthukrishnan, S. An improved data stream summary: the

count-min sketch and its applications. Journal of Algorithms 55, 1 (2005), 58–75.
[19] Estan, C., Varghese, G., and Fisk, M. Bitmap algorithms for counting active

flows on high speed links. In Proceedings of the 3rd ACM SIGCOMM conference
on Internet measurement (2003), pp. 153–166.

[20] Fan, L., Cao, P., Almeida, J., and Broder, A. Z. Summary cache: a scalable

wide-area web cache sharing protocol. IEEE/ACM transactions on networking 8, 3
(2000), 281–293.

[21] Flajolet, P., ric Fusy, Gandouet, O., and et al. Hyperloglog: The analysis of

a near-optimal cardinality estimation algorithm. In AOFA (2007).

https://barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.netronome.com/products/nfe/
https://tcpreplay.appneta.com/wiki/tcpreplay-man.html
https://www.caida.org/data/passive/passive_dataset.xml
https://www.caida.org/data/passive/passive_dataset.xml
https://www.netresec.com/?page=MACCDC
https://www.xilinx.com/products/silicon-devices/fpga.html

Telemetry Retrieval Inaccuracy in Programmable Switches: Analysis and Recommendations SOSR ’21, October 11–12, 2021, Virtual Event, USA

[22] Ghasemi, M., Benson, T., and Rexford, J. Dapper: Data plane performance

diagnosis of tcp. In Proceedings of the Symposium on SDN Research (2017), pp. 61–

74.

[23] Gupta, A., Harrison, R., Canini, M., Feamster, N., Rexford, J., andWillinger,

W. Sonata: Query-driven streaming network telemetry. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Communication (2018),

pp. 357–371.

[24] Harrison, R., Cai, Q., Gupta, A., and Rexford, J. Network-wide heavy hitter

detection with commodity switches. In Proceedings of the Symposium on SDN
Research (2018), pp. 1–7.

[25] Holterbach, T., Molero, E. C., Apostolaki, M., Dainotti, A., Vissicchio, S.,

and Vanbever, L. Blink: Fast connectivity recovery entirely in the data plane.

In Proc. of NSDI (2019).
[26] Huang, Q., Lee, P. P., and Bao, Y. Sketchlearn: Relieving user burdens in

approximate measurement with automated statistical inference. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communication
(2018), pp. 576–590.

[27] Katsikas, G. P., Barbette, T., Chiesa, M., Kostic, D., and Maguire Jr, G. Q.

What you need to know about (smart) network interface cards. In PAM (2021).

[28] Khandelwal, A., Agarwal, R., and Stoica, I. Confluo: Distributed monitoring

and diagnosis stack for high-speed networks. In Proc. of USENIX NSDI (2019).
[29] Kim, C., Sivaraman, A., Katta, N., Bas, A., Dixit, A., and Wobker, L. J. In-band

network telemetry via programmable dataplanes. In ACM SIGCOMM Demo
Session (2015).

[30] Krishnamurthy, B., Sen, S., Zhang, Y., and Chen, Y. Sketch-based change

detection: methods, evaluation, and applications. In Proceedings of the 3rd ACM
SIGCOMM conference on Internet measurement (2003), pp. 234–247.

[31] Liu, Z., Manousis, A., Vorsanger, G., Sekar, V., and Braverman, V. One

sketch to rule them all: Rethinking network flow monitoring with univmon. In

Proceedings of the 2016 ACM SIGCOMM Conference (2016), pp. 101–114.

[32] Liu, Z., Zhou, S., Rottenstreich, O., Braverman, V., and Rexford, J. Memory-

efficient performance monitoring on programmable switches with lean algo-

rithms. In Proc. of APoCS (2020), SIAM.

[33] Muthukrishnan, S. Data streams: Algorithms and applications. Now Publishers

Inc, 2005.

[34] Nychis, G., Sekar, V., Andersen, D. G., Kim, H., and Zhang, H. An empirical

evaluation of entropy-based traffic anomaly detection. In ACM IMC, 2008.
[35] Nychis, G., Sekar, V., Andersen, D. G., Kim, H., and Zhang, H. An empirical

evaluation of entropy-based traffic anomaly detection. In Proceedings of the 8th
ACM SIGCOMM conference on Internet measurement (2008), pp. 151–156.

[36] Nychis, G., Sekar, V., Andersen, D. G., Kim, H., and Zhang, H. An empirical

evaluation of entropy-based traffic anomaly detection. In Proceedings of the 8th
ACM SIGCOMM conference on Internet measurement (2008), pp. 151–156.

[37] Sivaraman, V., Narayana, S., Rottenstreich, O., Muthukrishnan, S., and

Rexford, J. Heavy-hitter detection entirely in the data plane. In Proceedings of
the Symposium on SDN Research (2017), pp. 164–176.

[38] Wang, L., Kim, H., Mittal, P., and Rexford, J. Programmable in-network

obfuscation of dns traffic (work-in-progress).

[39] Yang, T., Jiang, J., Liu, P., Huang, Q., Gong, J., Zhou, Y., Miao, R., Li, X., and

Uhlig, S. Elastic sketch: Adaptive and fast network-wide measurements. In

Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (2018), pp. 561–575.

[40] Yu, M., Jose, L., and Miao, R. Software defined traffic measurement with opens-

ketch. In Proc. of USENIX NSDI (2013).
[41] Zhao, Y., Yang, K., Liu, Z., Yang, T., Chen, L., Liu, S., Zheng, N., Wang, R.,

Wu, H., Wang, Y., et al. Lightguardian: A full-visibility, lightweight, in-band

telemetry system using sketchlets. In 18th USENIX Symposium on Networked
Systems Design and Implementation (2021).

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Problem Diagnosis
	3.1 A Closer Look at Sources of Error
	3.2 Quantifying Sources of Error

	4 Building Blocks and Solution Guidelines
	4.1 Building Blocks
	4.2 Guidelines for Sketch Developers

	5 Evaluation
	5.1 Experimental Setup
	5.2 Error and Delay Reduction
	5.3 Implementation Effort

	6 Related work
	7 Conclusions
	References

